Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2017

The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

Ionospheric heavy ions play an important role in the dynamics of Earth\textquoterights magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

Jahn, J.-M.; Goldstein, J.; Reeves, G.; Fernandes, P.; Skoug, R.; Larsen, B.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024183

geomagnetic activity; inner magnetosphere; plasma composition; plasma density; statistics; Van Allen Probes

2016

The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes

A statistical examination on the spatial distributions of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes against varying levels of geomagnetic activity (i.e., AE and SYM-H) and dynamic pressure has been performed. Measurements taken by the Electric and Magnetic Field Instrument Suite and Integrated Science for the first full magnetic local time (MLT) precession of the Van Allen Probes (September 2012\textendashJune 2014) are used to identify over 700 EMIC wave events. Spatial distributions of EMIC waves are found to vary depending on the level of geomagnetic activity and solar wind dynamic pressure. EMIC wave events were observed under quiet (AE <= 100 nT, 325 wave events), moderate (100 nT < AE <= 300 nT, 218 wave events), and disturbed (AE > 300 nT, 228 wave events) geomagnetic conditions and are primarily observed in the prenoon sector (~800 < MLT <= ~1100) at L ≈ 5.5 during quiet activity times. As AE increases to disturbed levels, the peak occurrence rates shift to the afternoon sector (1200 < MLT <= 1800) between L = 4 and L = 6. A majority of EMIC wave events (~56\%) were observed during nonstorm times (defined by SYM-H). Consistent with the quiet AE levels, nonstorm EMIC waves are observed in the prenoon sector. EMIC waves observed through the duration of a geomagnetic storm are primarily located in the afternoon sector. High solar wind pressure (Pdyn > 3 nPa) correlates to mostly afternoon EMIC wave observations.

Saikin, A.; Zhang, J.; Smith, C.; Spence, H.; Torbert, R.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022523

EMIC waves; geomagnetic activity; solar wind dynamic pressure; spatial distributions; Van Allen Probes



  1